Preparation of Mouse Embryonic Fibroblast Cells Suitable for Culturing Human Embryonic and Induced Pluripotent Stem Cells
نویسندگان
چکیده
In general, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs)(1) can be cultured under variable conditions. However, it is not easy to establish an effective system for culturing these cells. Since the culture conditions can influence gene expression that confers pluripotency in hESCs and hiPSCs, the optimization and standardization of the culture method is crucial. The establishment of hESC lines was first described by using MEFs as feeder cells and fetal bovine serum (FBS)-containing culture medium(2). Next, FBS was replaced with knockout serum replacement (KSR) and FGF2, which enhances proliferation of hESCs(3). Finally, feeder-free culture systems enable culturing cells on Matrigel-coated plates in KSR-containing conditioned medium (medium conditioned by MEFs)(4). Subsequently, hESCs culture conditions have moved towards feeder-free culture in chemically defined conditions(5-7). Moreover, to avoid the potential contamination by pathogens and animal proteins culture methods using xeno-free components have been established(8). To obtain improved conditions mouse feeder cells have been replaced with human cell lines (e.g. fetal muscle and skin cells(9), adult skin cells(10), foreskin fibroblasts(11-12), amniotic mesenchymal cells(13)). However, the efficiency of maintaining undifferentiated hESCs using human foreskin fibroblast-derived feeder layers is not as high as that from mouse feeder cells due to the lower level of secretion of Activin A(14). Obviously, there is an evident difference in growth factor production by mouse and human feeder cells. Analyses of the transcriptomes of mouse and human feeder cells revealed significant differences between supportive and non-supportive cells. Exogenous FGF2 is crucial for maintaining self-renewal of hESCs and hiPSCs, and has been identified as a key factor regulating the expression of Tgfβ1, Activin A and Gremlin (a BMP antagonist) in feeder cells. Activin A has been shown to induce the expression of OCT4, SOX2, and NANOG in hESCs(15-16). For long-term culture, hESCs and hiPSCs can be grown on mitotically inactivated MEFs or under feeder-free conditions in MEF-CM (MEF-Conditioned Medium) on Matrigel-coated plates to maintain their undifferentiated state. Success of both culture conditions fully depends on the quality of the feeder cells, since they directly affect the growth of hESCs. Here, we present an optimized method for the isolation and culture of mouse embryonic fibroblasts (MEFs), preparation of conditioned medium (CM) and enzyme-linked immunosorbent assay (ELISA) to assess the levels of Activin A within the media.
منابع مشابه
Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملI-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملEvaluation and Comparison of the Expression Levels of the ZBTB16 (Plzf) and ZFP Genes and Alkaline Phosphatase in Three Cell Populations: Mouse Spermatogonial Stem Cells, Embryonic Stem-Like Cells (Es-Like), And Embryonic Stem Cells
Introduction: One of the vital enzymes during spermatogenesis, which is one of the pluripotency factors of stem cells and contributes to maintaining their pluripotency is alkaline phosphatase. ZBTB16 and ZFP proteins are critical elements in stem cells which are expressed in pluripotent stem cells and maintain their pluripotency due to their role in messaging pathways. Material & Methods: The ...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملI-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کاملThe effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کامل